Japanese/English

WAKATSUKI Satoshi

Professor, Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University
Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan.
E-mail:
Research Interests: Automorphic form, Automorphic representation, Trace formula, Shintani zeta function.

Papers

  1. The Shintani double zeta functions (with H. Kim and M. Tsuzuki), arXiv:1907.04522, 2019.
  2. Mass formulas and Eisenstein congruences in higher rank (with K. Martin), arXiv:1907.03417, 2019, submitted.
  3. Subconvex bounds for Hecke-Maass forms on compact arithmetic quotients of semisimple Lie groups (with P. Ramacher), arXiv:1703.06973, 2017, submitted.
  4. Equidistribution theorems for holomorphic Siegel modular forms for GSp_4; Hecke fields and n-level density (with H. Kim and T. Yamauchi), arXiv:1802.09970, to appear in Math. Z.
  5. An equidistribution theorem for holomorphic Siegel modular forms for GSp_4 (with H. Kim and T. Yamauchi), arXiv:1604.02036, to appear in J. Inst. Math. Jussieu.
  6. The dimensions of spaces of Siegel cusp forms of general degree, Adv. Math. 340 (2018), 1012--1066. arXiv link
  7. The subregular unipotent contribution to the geometric side of the Arthur trace formula for the split exceptional group G_2 (with T. Finis and W. Hoffmann), Geometric Aspects of the Trace Formula, Proceedings of the Simons symposium, Schloss Elmau, Germany, April 10--April 16, 2016. Simons Symposia, 163--182 (2018). arXiv link
  8. On the geometric side of the Arthur trace formula for the symplectic group of rank 2 (with W. Hoffmann), Mem. Amer. Math. Soc. 255 (2018), no. 1224. arXiv link
  9. Congruences modulo 2 for dimensions of spaces of cusp forms, J. Number Theory 140 (2014), 169--180. link erratum
  10. Multiplicity formulas for discrete series representations in L2(Γ∖Sp(2,R)), J. Number Theory 133 (2013), 3394--3425. link
  11. Dimension formulas for spaces of vector-valued Siegel cusp forms of degree two, J. Number Theory 132 (2012), 200--253. link
  12. Relations among Dirichlet series whose coefficients are class numbers of binary cubic forms, Amer. J. Math. 131 (2009), 1525--1541 (with Y. Ohno and T. Taniguchi). arXiv link
  13. Siegel modular forms of small weight and the Witt operator, Contemp. Math. 493 (2009), 189--209 (with T. Ibukiyama). link
  14. Igusa local zeta functions and integration formulas associated to equivariant maps, Osaka J. Math. 42 (2005), 463--486.
  15. The Igusa local zeta function of the simple prehomogeneous vector space (GL(1)4×SL(2n+1),Λ2111), J. Math. Soc. Japan 57 (2005), no. 1, 115--126.
  16. Igusa local zeta functions of regular 2-simple prehomogeneous vector spaces of type I with universally transitive open orbits, Math. J. Okayama Univ. 46 (2004), 85--104.
  17. b-Functions of regular 2-simple prehomogeneous vector spaces associated to the symplectic group and the orthogonal group, Comment. Math. Univ. St. Pauli 53 (2004), no. 2, 121--137.

Past Conference

RIMS Conference: Automorphic forms, automorphic representations and related topics
Date:Jan. 21 (Mon.) -- Jan. 25 (Fri.) 2019.
Venue:Room 420, RIMS, Kyoto University


Last modified: July 17, 2019