Japanese/English

**WAKATSUKI Satoshi**

Professor, Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University

Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan.

#### Papers

#### Past Conference

####

Professor, Faculty of Mathematics and Physics, Institute of Science and Engineering, Kanazawa University

Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan.

E-mail:

Research Interests: Automorphic form, Automorphic representation, Trace formula, Shintani zeta function.

・ Equidistribution theorems for holomorphic Siegel modular forms for GSp_4; Hecke fields and n-level density (with H. Kim and T. Yamauchi), arXiv:1802.09970, 2017, submitted.

・ Subconvex bounds for Hecke-Maass forms on compact arithmetic quotients of semisimple Lie groups (with P. Ramacher), arXiv:1703.06973, 2017, submitted.

・ An equidistribution theorem for holomorphic Siegel modular forms for GSp_4 (with H. Kim and T. Yamauchi), arXiv:1604.02036, to appear in J. Inst. Math. Jussieu.

・ The dimensions of spaces of Siegel cusp forms of general degree, Adv. Math. 340 (2018), 1012--1066. arXiv link

・ The subregular unipotent contribution to the geometric side of the Arthur trace formula for the split exceptional group G_2 (with T. Finis and W. Hoffmann), Geometric Aspects of the Trace Formula, Proceedings of the Simons symposium, Schloss Elmau, Germany, April 10--April 16, 2016. Simons Symposia, 163--182 (2018). arXiv link

・ On the geometric side of the Arthur trace formula for the symplectic group of rank 2 (with W. Hoffmann), Mem. Amer. Math. Soc. 255 (2018), no. 1224. arXiv link

・ Congruences modulo 2 for dimensions of spaces of cusp forms, J. Number Theory 140 (2014), 169--180. link erratum

・ Multiplicity formulas for discrete series representations in L^{2}(Γ∖Sp(2,R)), J. Number Theory 133 (2013), 3394--3425. link

・ Dimension formulas for spaces of vector-valued Siegel cusp forms of degree two, J. Number Theory 132 (2012), 200--253. link

・ Relations among Dirichlet series whose coefficients are class numbers of binary cubic forms, Amer. J. Math. 131 (2009), 1525--1541 (with Y. Ohno and T. Taniguchi). arXiv link

・ Siegel modular forms of small weight and the Witt operator, Contemp. Math. 493 (2009), 189--209 (with T. Ibukiyama). link

・ Igusa local zeta functions and integration formulas associated to equivariant maps, Osaka J. Math. 42 (2005), 463--486.

・ The Igusa local zeta function of the simple prehomogeneous vector space (GL(1)^{4}×SL(2n+1),Λ_{2}+Λ_{1} +Λ_{1} +Λ_{1}), J. Math. Soc. Japan 57 (2005), no. 1, 115--126.

・ Igusa local zeta functions of regular 2-simple prehomogeneous vector spaces of type I with universally transitive open orbits, Math. J. Okayama Univ. 46 (2004), 85--104.

・ b-Functions of regular 2-simple prehomogeneous vector spaces associated to the symplectic group and the orthogonal group, Comment. Math. Univ. St. Pauli 53 (2004), no. 2, 121--137.

RIMS Conference: Automorphic forms, automorphic representations and related topics

Date：Jan. 21 (Mon.) -- Jan. 25 (Fri.) 2019.

Venue：Room 420, RIMS, Kyoto University

Last modified: January 26, 2019